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Hadow. '!:../ The conditions are usually satisfied with rer,ard to estimates

from sample surveys. As a rule of thumb the variance formula is usually

accepted as satisfactory if the coefficient of variation of the variable
(J

in the denominator is less than 0.1; that is, if w < 0.1. In other words,
w

this condition states that the coefficient of variation of the estimate in

the denominator should be less than 10 nercent. A lar~er coefficient of

variation might be tolerable before becoming concerned about Equation (3.26)

as an approximation.
(J

The condition w < 0.1 is nore strin~ent than necessary for re?ardin~
'IT

the bias of a ratio as ner,ligible. Hith few exceptions in practice the

bias of a ratio is ignored. Some of the logic for this \ITi11appear in

the illustration belmIT. To summarize, the conditions when Equations (3.25)

and (3.26) are not good approximations are such that the ratio is likely to

be of questionable value owinp, to large variance.

If u and ware linear combinations of random variables, the theory

presented in previous sections applies to u and to \v. Assuming u and w

are estimates from a sample, u take theto estimate Var(-) into account\v

samp 1e design (3.26 ) - - 2 2and substitute in Equa tion estimates of u, w, 0u' 0w'
and p • Ignore Equation (3.25) unless there is reason to believe the biasuw
of the ratio might be important relative to its standard error.

uIt is of interest to note the similarity between Var(u-w) and Var(-).
\v

According to Theorem 3.5,

Var(u-w) = 02 + 02 - 2pu w uw o 0u \v

J:../ Hansen, HUr\I1itz,and Hadow, Sample Survey Methods and Theory,
Volume I, Chapter 4, John Wiley and Sons, 1953.
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By definition the relative variance of ;m estimate is the variance of the

estimate divided hy the snuare of its expected value. TI1US, in terms of

the relative variance of a ratio, Equation (3.26) can be written

ReI Var(~)
\v

2a
~+-2
u

2aw
-2
w

2p
uu

a au \-l

UlY'

The similaritv is an aid to rememberinp; the formula for Var(~).
\01

_I_I_Iu.s_t_r.~,=-~0E._~.Jl... Suppose one has a simple ranrlon sample of n
- -elements from a population of N. Let x and y be the si1T'1plemeans for

characteristics X and Y. Then, u = x, lV = y,
2 52

2 N-n Sx
and 2 N-n Ya = a =

u N n \Y' N n

Notice that the condition discussed above,

saMple is large enough so

a
\01

< 0.1, is satisfied if the
w

N-n
N -')

nY'"

2
< 0.1

Substituting in Equation 0.26) we obtain the following as the variance of

the ratio:

xVar(-.=-)
y

~l-n 1(---)(-)
N n

;-;2
A

-2y

S2 52
X Y[-+--2 -2X Y

2PxySiv
-----)

XY

The bias of x Xas an estirnate of is given by the second term of
y y

Equation (3.25). For this illustration it becomes
'1

s"-
P~:XOy ](N-n) (l) X 'y

[-- -N n
V y2 :-''Y

As the size of the sample increases, the bias decreases as ~ whereas the
n

standard error of the ratio decreases at a slower rate, namely 1

Ift-
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Thus. we need not be concerned about a possibility of the bias becomin~

important relative to samplinr. error as the size of the sample increases.

A possible exception occurs when several ratios are combined. An example

is stratified random sampling when many strata are involved and separate

ratio estimates are made for the strata. This is discussed in the books

on sampling.

3.9 CONDITIONAL EXPECTATION

The theory for conditional expectation and conditional variance of a

random variable is a very important part of sampling theory. especially

in the theory for multistage sampling. The theory will be discussed with

reference to two-stage sampling.

The notation that will be used in this and the next section is as

follO\o1s:

H is the number of psu's (primary sampling units) in the population.

m is the number of psu's in the sample.
thNi is the total number of elements in the i psu.

H
N = ZNi is the total number of elements in the population.

i

thni is the sample number of elements from the i psu.

m
n = ~ni is the total number of elements in the sample.

~

m

Xij is the value of X for the jth element in the ith psu. It

refers to an element in the population. that is. j - 1••••• Ni•

and i = 1 ••••• }1.
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xij is the value of X for the jth element in the sample from the

ith psu in the sample, that is, the indexes i and _i refer to

the set of psu's and elements in the sample.

Ni.,
l: A •• is
j ~J

the population total for the ith psu.

x.~. is the averaf':eof X for all elements in the ith psu.

x

;1
l:X .. ~.~

N
is the avera?e of all N elel'1ents.

x

M
l:X.

l'i is the avera~e of the psu totals. Be StIr£'to note the

difference between X and X

x.~. ~ix .. is the sawnle total for the ith psu ill

j IJ
the sample.

h .tht e 1 psu.

X.
1·

x.~. is the averilr:efor the n. elements in the samnle fromn. 1
1

x

r.m.
'")~
~u x ..
i. 1]~--

n
is the average for all elements in the samnle.

Assume simple random samplin!!, elluillprobabilitv of selection without

replacement, at both stages. Consider the sample of n, elements from the
1

.th
1 psu. We know from Section 3.3 that x. is an unbiased estimate of the

l'

psu mean X.~. that is, E(~i.) = Xi. and for 3 fixed i (a specified psu)
-

EN,X,
1 ~.

But, owing to the first stage of sampling,
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EN.x, must be treated as a rando~ variahle. Hence, it is necessary to
1 1

become involved with the expected value of an expected value.

First, consider X as a random variable, in the context of single-

stage samplinr" which could equal anyone of .the values X" in theX 1]

population set of N = IN, . Let P(ij) be the probability of selecting
, 1
1

the jth element in the ith psu; that is, P (ij) is the probability of X

bein? equal to X, " By definitionlJ

E(X) (3.27)

Now consider the selection of an element as a two-step procedure:

(1) selected a psu with probability P(i), and (2) selected an element

\vithin the selected psu \vith probability Pei I i). In words, PCi I i) is the

b b'li fit' tl J,th elenent l'n the l·th . th t thproal tyo'seeclng 1e psuglven.a e

,th hid bid1 psu as a rea y een se ecte .

stitution,Equation (3.27) becomes

Thus, P(ij) = P(i)p(jli). By sub-

MN
E(X) LIip(i)P(jli)Xi,

ij J

or E(X)
1'1 N,
IP(i) IIp(j I i)X. ,
1

, " 1]J .
(3.28)

By definition,
N.
IIp(jli)X'

j
is the expected value of X for a fixed value

, 1J •

of 1. It is called"conditional expectation."

Let E2(XI i)
N,
:lp (j I i)Xij \.,hereE2 (Xl 1) is the form of notation we
J

will be using to designate conditional expectation. To repeat, E2(XI i)

means the expected value of X for a fixed 1. The subscript 2 indicates
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that the conditional expectation applies to the second 5ta~e of sampling.

El and E2 will refer to expectation at the first and second stages,

respectively.

Substitutin~ E
2
(xl i) in Equation (3.28) we obtain

E(X)
M
H(i) E2C(1 i)
i

(3.29)

There is one value of E
2
(xl1) for each of the H psu's. In fact E

2
(xl i)

is a randol" variable where the probability of EZ(Xl i) is P (1). Thu5 the

right-hand side of El'luation (3.29) is, by definition, the expected value

of E2(Xli). This leads to the following theorem:

Suppose P(j I i) :: 1
N.

1

and P(i) 1
M' Then,

Ii. 1
::,\",l( )" =': 'N: "i jJ 1 .

and E(X) = El(X, )
1·

:--1
= L (~) (Xi) =

i .

In this case E(X) is an unweighted avera~e of the psu averages. It is

important to note that, if P(i) and p(ili) are chosen in such a way that

P(i.i) is constant, every element has the same chance of selection. This

point will be discussed later.

Theorem 3.3 dealt witil the expected value of a linear combination of

random variables. There is a corresponding theorem for conditional expecta-

tinn. Assume the linear combination is

k
:: a u

t=l t t



101

where al •••••ak are constants and ul •••••uk are random variables. Let

E(Ulci) be the expected value of U under a specified condition. ci• where

ci is one of the conditions out of a set of M conditions that could occur.

The theorem on conditional expectation can then be stated symbolically as

follows:

Theorem 3.7.

or E(Ulc.)
1

Compare Theorems 3.7 and 3.3 and note that Theorem 3.7 is like

Theorem 3.3 except that conditional expectation is apolied. Assume c is

a random event and that the probahility of the event ci occurring is P(i).

Then E(Ulc.) is a random variable and by definition the expected value of
1

M
E(ulci) is ~P(i)E(ulci) which is E(U). Thus. we have the followin~

i
theorem:

!.heo~~l'I!~' The expected value of U is the expected value of the

conditional expected value of U. which in symbols is written as follows:

E(U) = EE(Ulc.)
1

(3.30)

Substituting the value of E(ulci) from Theorem 3.7 in E~uation (3.30)

we have

Illustrat!..~l!3.14. Assume two-stage sampling with simple random

sampling at both stages. Let x". defined as follmvs. be the estimator of

the population total:
H m Ni n.

x = ~ - ~1 X ••m i ni 1Jj

(3.31)

(3.32)
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~~~~~~~e __ ~~lJ_. Examine the estimator.x~, Equation (3.32). Express

it in other forms that mip,ht help show its lo~ical structure. For example.

for a fixed i what is Does it seem like a reasonable way of

estimatin~ the population total?

To display x~ as a linear combination of random variables it is

convenient to express it in the followin~ form:

x xmn m
(3.33)

Suppose we want to find the expected value of x~ to determine whether it

is equal to the population total. According to Theorem 3.8.

ECluations (3.34) and (3.15) are obtained simplv by substltutinp, x as

the random variable in (3.30). The c. n~~ refers to anyone of the m
1 -

psu's in the sample. First we must solve the conditional expectation.

(3.35)

HSince and
m

~.
1 are constant with resnect to the conditional

n.
1

expectation. and makinf, use of Theoren 3.7, It/e can IHi te

:-t m Ni n.
-- ., -- L:1
m

i
n
i j

E2(x .. Ii)
1J

(3. 36)

\-IeknOt_ for any given psu in the sanple that xi' is an element in a
J

simple random sample froM the psu and according to Section 3.3 its

expected value is the psu mean. X.
l'

That is,
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(3.37)

Substituting the result from Equation (3.37) in Equation (3.36) gives

(3.38)

Next we need to find the expected value of E2(x~li). In Equation

(3.38), Ni is a random variable, as well as Xi.' associated with the first

stage of sampling. AccordinGly, we will take Xi. = NiXi• as the random

variable which gives in lieu of Equation (3.38).

M
m

m
~ X.
i l'

There fore,
E(x~)

From Theorem 3.3

m
= E [!! EX]

1 m i i'

Sin ce

m
E [.t!}; Xi.] =
1 m i

m
~ EE (X )m 1 i·i

m
EEl (X. )

l'i

H
EXi.
i••m[---]

M

M
••~Xi·

i

M
Therefore, E(x~) •• ~ Xi' ••X

i
This shows that x~ is an unbiased

estimator of the population total.

3.10 CONDITIONAL VARIANCE

Conditional variance refers to the variance of a variable under a

specified condition or limitation. It is related to conditional prob-

ability and to conditional expectation.
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To find the variance of x~ (See Equation 0.32) or 0.33» the following

important theorem \vill be used:

T_h_~~~~~_~.~. The variance of x~ is given bv

v (x ~)

Hhere VI is the variance for the first stage of samrlinr, and V
2

is the

"conditional" variance for the second stage.

He have discussed E2(x~1 i) and noted there is one value of E2(x~li)

for each psu in the population. Hence Vl[2(x~li) i~ simply the variance

of the M values of E2(x~1 i).

In Theorem 3.9 the conditional variance, V2(x~! i) , bv definition is

To undcrstanu V2(x ~Ii) tilink of x ~ as a linear c0111hination of random

variah les (see Equation (J. 33». Consider the variance of x ~ ,,,hen i is

held constant. All terms (random variables) in the linear conbination

are ) .. i fl' .,. I .thnOH constant except t lOse or1r;1nat ng ron samp Lng '''1tn1n t 1e 1

psu. Therefore, V2(x~1 i) is associated with variation amonp elements in

the ith psu. V2(x~li) is a randoPl variable 'vith 'I v:llues in the set, one

[or each psu. Therefore, FIV2(x~1 1) bv definition is

!·f
L:P(i)V2(x~1 i)
i

That is, ElV2(x~li) is an averape 9f '{ values of V2(x~!i) weir;hted by

P (i), the probability that the i th pSlI had of beinr: in the sample.

Three illustrations of the application of Theoren; 3.9 'vill be given.

In each case there "lill he five steps in findin~ the variance of x ~:

Step 1, find E~(x~1 i)
L
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Step 3, find VZ(x'li)

Step 4, find ElVZ(x'li)

Step 5, combine results from Steps Z and 4.

Illustration 3.15. This is a simple illustration, selected because

we knm-l what the ans,.,eris froln previous discussion and a linear combina-

tion of random variables is not involved. Suppose x' in Theorem 3.9 is

simply the random variable X where X.has an equal probability of bein?

~1
anyone of the Xij values in the set of N •• ENi •

i

variance of X can be expressed as follows:

He know that the

(3.39)

In the case of two-stage samplinp, an equivalent method of selecting a

value of X is to select a psu first and then select an element within the

psu, the condition being that P(ij) ••p(i)p(jl i) I.. -N • This condition is

satisfied by letting P(i) and P(j!i) ••~ .
i

We now want to find

VeX) by using Theorem 3.9 and check the result with Equation (3.39).

Step 1. From the random selection specifications '-le know that

EZ(X'!i) ••ii' Therefore,

Step 2. VlEZ(x'li)" VI(Xi.)

We know that

equal to the

NiXi. is a random variable that has a probability of ~ of being

ith value in the set Xl"'" ~. Therefore, by definition

of the variance of a random variable,

where x

M
•• E

i

M N
i

_
•• E - X

i N i.

Ni - - z
N (Xi.-X •• )

M
EX
i i·

N

(3.40)
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Step 3. By definition

~,.
,,1 1
. N.
] 1

- 2
(X .. -X. )

11 1·

Step 4. Since each value of V2(x~li) has a prohabi1itv

H
E1V2(x~li) = l:

i

N.
1

N
- 2

(X .. -x. )
1J 1·

(3.41 )

Step 5. From Equations (3.40) and (3.41) we obtain

1 ~! H N.
N [~;~. (X. -X )2 + L ~1 (X .. -X. )2]

i 1 1••• ii 1) 1•

The fact that Equations (3.42) and (3.39) are the same is verified

by Equation (1.10) in Ch~pter I.

~!}us_tE~~iy_~_3_._l_6. Find the variance of the estimator x ~iven by

(3.42)

ECjuation (3.32) assuming simple random samrlin~ at both star,es of sampling.

Step 1. Theorem 3.7 is appl icahle. That is,

~n. ;1 N.
E2(x~1 i)

_,,1 I x .. li]~L E') [--
ij ~ m n. 11

1.

\,rhich means dsum the coneli tional expected values of each of the n terms

in ECJuation (3.33)."

With regard to anyone of the terms in Equation (3.33), the

conditional expectation is

"[ ;~. M
E [.::... 1 I ') = .

2 m - X •• 1
ni 1J m

Therefore
mn. 1-1

:...: .
E2(x~1 i) :~I: 1.

1·

ij
m n.

1.

tl
~1 i"-- -- ~\'"
m T1. 1·

I

'1 X.. 1·

m n.
I

(3.43)

\Hth reference to ECJuation (3.43) and summinr with respect to j. we have
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m

!:!x
m i·
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Hence Equation (3.43) becomes

~x
i i

This is simnle because
M

Ste p 2.

m

in Equation

(3.44)

(3.44) is the mean of a random sample of m from the set of psu totals

Xl""" \1' Therefore,

where

(3.45 )

and x

In the subscript to 2a , the lib" indicates between psu variance and "1"

distinguishes this variance from between psu variances in later illustra-

tions.

Step 3. Finding V2(x~li), is more involved because the conditional

variance of a linear combination of random variables must be derived.

However, this is analogous to using Theorem 3.5 for finding the variance

of a linear combination of random variables. TheoreM 3.5 applies except

that V(uli) replaces V(u) and conditional variance and conditional co-

variance replace the variances and covariances in the formula for V(u).

As the solution proceeds, notice that the strategy is to shape the problem

so previous results can be used.

Look at the estimator x ~, Equation (3.33), and determine ,.rhetherany

covariances exist. An element selected from one psu is independent of an
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element selected from another; but within a psu the situation is the same

as the one we had when finding the variance of the mean of a simple random

sample. This suggests writing x~ in terms of xi. because the xi' 's are

independent. Accordinr.lv, we will start with

Hence

x H= -
m

m
L Nix.
i ~.

Since the x 's are independent
i·

and since Ni is constant with regard to the conditional variance

(3.46 )

Since the sampling within each psu is simple random sampling

(3.47)

2CJ =
i

Step 4. After substituting the value of V2(xi.1 i) in Equation (3.46),

and then applying Theorem 3.3, we have

M2 Ni-ni
2m

E [N2 °iE1V2(x~1 i) = 2 L -]
i 1 i N -1 nim i

Since the first stap,e of sanplinr, was simple random sampling and each psu

had an equal chance of being in the sample,
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Ni-ni
Z M Ni-ni

Z
Z °i 1 E NZ °iE1[Ni -]=N -1 ni M i i N.-1 nii 1

Hence

M Z Ni-ni
Z

ElVZ(x'!i) M °i= - E Nim N.-1 nii 1

(3.48)

Step 5. Combining Equation (3.413) and Equation (3.45)
Z

H Z Ni-ni
Z

= MZ H-m °b 1 H 0.
V (x') --+- E N. 1

H-1 m m i 1 N -1 n.i 1

the answer is

(3.49)

stage select m psu's with replacement and probability P(i)

Illustration 3.17. The sampling specifications are: (1) at
N
i

N

the first

and (Z)

at the second stage a simple random sample of ~ elements is to be selected

fron each of the m psu's selected at the first stage. This will Rive a sam-

pIe of n = mn elements. Find the variance of the sample estimate of the

population total.

The estimator needs to be changed because the psu's are not selected

with equal probability. Sample values need to be weighted by the recip-

roca1s of their probabilities of selection if the estimator is to be

unbiased. Let

P'(ij) be the probability of element ij being in the sample,
thP'(i) be the relative frequency of the i psu being in a sample

of m, and let

P"(jli) equal the conditional probability of element ij being in
ththe sample Riven that the i psu is already in the sample.

Then

N.
1According to the sampling specifications P'(i) = m ~. This prob-

abili ty was described as relative frequency because "probability of being
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in a s.:lmple of m psu's" is subject to misinterpretation. The ith psu

can appear in a sanple no H' than once anu it is counted every time it

Tl i .f ! .th , 1 d h 1 flat s. 1 tie 1 psu 1S se ecte more t an once. a sRmp eo.

n is selected Hithin the i th PSll everv time thnt it is selected. By

subs t itution
N -
i n

[m ',-,1·-] .,.~.
1

mn
!\

n
""

(3.50 )

Equation (3.50) means that every element has an eCjual probability of beinr;

in the sample. ConseCJuentlv. the estimator is very simple.

~ mn
x == ,"l-xi,

mn .. 1
11

(3.51)

Exercise 3.18. Shmy that x'. Equat ion 0.51). is an unhiased es timator

of the population total.

In findin~ Vex') our first step was to solve for E
2
(x'l i).

Step 1. By definition

E2(X'!i) = E2{[N ..::
mn

mn
ILXi,]!i}
ij J

Since i is constant \vith rer.ard to E2•

mn

mn
H E"}(x .. li)
ij ~ 1.1

(3.52)

Proceeding from Equation (3.52) to the follrnvin~ result is left as an

exercise:

:1
E

2
(x'! i) =

J"l

Step 2. From Equation (3.53) we have

0.53)

v (~
1 m

m
}:X, )
i l'
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Since the X 's are independent
i·

m

L V
1
(X. )

i 1"

Because the first stap,e of sampling is sar.1plinp, ,,,ith probability propor-

tiona1 to ::. and \vith replacement,
1

V
1

(X. )
l'

H N.
)2'" 1 (\ -XN ...

i
(3.54 )

Let

V1C~. )1·

Then
?N- 2

= -- a
J:1 b2

(3.55)

Exercise 3.19. Prove that E(X. )
1·

X•. ,.,rhich shO\JS tl1.1.t it is

appropriate to use X.. in Equation (3.54).

Step 3. To find V
2
(x'l i), first write the estil'lator as

.-x = m

m
I.: x.
i 1.

(3.56 )

Then, since the x. 's are independent
1·

and

where

?N -n a:
V

2
(x. ) i 1

1· Ni-1 n
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Therefore

n

Step 4.

Since the probability of V2(x'!i)

which becomes

2 M NiE V (x'li) = ~ L1 2 - Nmn i
(3.57)

Step 5. Combining Equation (3.55) and Equation (3.57) we have the

V (x') (3.58)
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CHAPTER IV. THE DISTRIBUTION OF AN ESTIMATE

4.1 PROPERTIES OF SIMPLE RANDOM SAMPLES

The distribution of an estimate is a primary basis for judging the

accuracy of an estimate from a sample survey. But an estimate is only

one number. How can one number have a distribution? Actually, "distri-

bution of an estimate" is a phrase that refers to the distribution of

all possible estimates that might occur under repetition of a prescribed

sampling plan and estimator (method of estimation). Thanks to theory

and empirical testing of the theory, it is not necessary to generate

physically the distribution of an estimate by selecting numerous samples

and making an estimate from each. However, to have a tangible dist,ribu-

tion of an estimate as a basis for discussion, an illustration has been

prepared.

Illustration 4.1. Consider simple random samples of 4 from an

assumed population of 8 elements. N! 8!There are n!(N-n)! • 4!4! • 70 possible
samples. In Table 4.1, the sample values for all of the 70 possible sam-

pIes of four are shown. The 70 samples were first listed in an orderly

manner to facilitate getting all of them accurately recorded. The mean,

x, for each sample was computed and the samples were then arrayed

according to the value of x for purposes of presentation in Table 4.1.

The distribution of x is the 70 values of x shown in Table 4.1, including

the fact that each of the 70 values of x has an equal probability of being

the estimate. These 70 values have been arranged as a frequency distribu-

tion in Table 4.2.

As discussed previously, one of the properties of simple random

sampling is that the sample average is an unbiased estimate of the popu-

1ation average; that is, E(x) - X. This means that the distribution of



Table 4.1--Samples of four elePlents from a population of eight 1/

S 1 . Values ofampe:
number: xi x

2s
S 1· Valu~s ofamp e:

: number: xi x 2
s

........ .. .. ..--------------- - - ,- ------ --~ --------- --------- -------------"-.-------
Ie
2
3
4
5

6
7
8
ges

10

lls
12
13
14
15s

16
17
188
19s
20

2ls
22s
238
248
25

268
278
28e8
29
308

31s
32s
338
348
358

2,1,6,4
2,1,4,7
2,1,4,8
2,1,6,7
2,1,4,9

2,1,6,8
2,1,6,9
2,1,4,11
2,1,7,8
1,6,4,7

2,1.7,9
2,6,4,7
1,6,4,8
2,1,6,11
2,1,8,9

2,6,4,8
1,6,4,9
1,4,7,8
2,1,7,11
2,6,4,9

2,4,7,8
1,4,7,9
2,1,8,11
2,4,7,9
1,6,4,11

1,6,7,8
1,4,8,9
2,1,11,9
2,6,4,11
2,6,7,8

2,4,8,9
1,6,7,9
1,4,7,11
2,6,7,9
2,4,7,ll

3.25
3.50
3.75
4.00
4.00

4.25
4.50
4.50
4.50
4.50

4.75
4.75
4.75
5.00
5.00

5.00
5.00
5.00
5.25
5.25

5.25
5.25
5.50
5.50
5.50

5.50
5.50
5.75
5.75
5.75

5.75
5.75
5.75
6.00
6.00

4.917
7.000
9.583
8.667

12.667

10.917
13.667
20.333
12.333

7.000

14.917
4.917
8.917

20.667
16.667

6.667
11.337
10.000
21. 583

8.917

7.583
12.250
23.000

9.667
17.667

9.667
13.667
24.917
14.917

6.917

10.917
11. 583
18.250

8.667
15.333

368
378
38s
39s
40s

41s
42
43es
44s
458

46
47s
48s
495
50s

51
528
53s
54
55

56s
57
58
59
60s

61
62es
63
64
65

66
67
68
69
70e

1,6,1\,9
1,[+,8,11
2,6,B,9
2,4,S,11
1,6,7,11

1,4,:1,9
1,7 ,i\ ,9
6,4,7,8
2,6,7,11
2,4,11,9

2,7,1),9
1,6,S,11
6,4,7,9
2,fJ,B,11
l,fi,~1,9

1,7,8,11
fi,4,B,9
2,6,11,9
2,7,il,11
1,7,11,9

6,4,7,11
4,7,8,9
2,7,1-1,9
1,8,11,9
6,4,8,11

2,8,~1,9
6,4,11,9
6,7,n,9
4,7,8,11
4,7,J1,9

6,7,8,11
4,8,~1,9
6,7,U,9
6,8, ;.1,9
7,8,:.1,9

6.00
6.00
6.25
6.25
6.25

6.25
6.25
6.25
6.50
6.50

6.50
6.50
6.50
6.75
6.75

6.75
6.75
7.00
7.00
7.00

7.00
7.00
7.25
7.25
7.25

7.50
7.50
7.50
7.50
7.75

8.00
8.00
8.25
8.50
8.75

12.667
19.333

9.583
16.250
16.917

20.917
12.917

2.917
13.667
17 .667

9.667
17 •667

4.333
14.250
18.917

17.583
4.917

15.333
14.000
18.667

8.667
4.667

14.917
18.917

8.917

15.000
9.667
1.667
8.333
8.917

4.667
8.667
4.917
4.333
2.917

= 12.

Values of X for
6, X4 = 4, X5 =
L(X.-X)2

1
N-l

the population of eight elements are Xl = 2, X2 = I,
7, X6 = 8, X7 = 11, Xs = 9; X = 6.00; and
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Table 4.2--Samp1inr, distribution of x

Relative frequency of x

Simple random :Stratified random:C1uster samplingsampling samplinp,
:I11ustration 4.1 :I1lustration 4.2 :Illustration 4.2
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... .- ------ ---- --- --"-- ---- ---_._-- -------------------
3.25 1

3.50 1

3.75 1

4.00 2
4.25 1

4.50 4
4.75 3
5.00 5
5.25 4
5.50 5
5.75 6
6.00 4
6.25 6

6.50 5
6.75 4
7.00 5
7.25 3
7.50 4
7.75 1

8.00 2
8.25 1

8.50 1

8.75 1

1

1

1

1

1

1

1

1

2

3

4

5

4

5

4

3

2

1

1

------_.- ---- ---------~---------------------
Total

ExpecEed value
of x

Variance of x

70

6.00
1. 50

6

6.00
3.29

36

6.00
0.49

-- ----~_._-----------------~---------------- ---
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x is centered on X. If the theory is correct, the average of x for the

70 samples, which are equally likely to occur, should be equal to the

population average, 6.00. The average of the 70 samples does equal 6.00.

From the theory of expected values, we also know that the variance

of x is given by

S~ ••N-n ~
x N n

where
N
1:(Xi-X)2

S 2 •• _i _
N-l

With reference to Illustration 4.1 and Table 4.1, S2 ••12.00 and S~ -x
8-4 12--8-~ - 1.5. The formula (4.1) can be verified by computing the

variance among the 70 values of x as follows:

(4.1)

(3.25-6.00)2 + (3.50-6.00)2 +...+
70

2(8.75-6.00) _ 1.5

2Since S is a population parameter, it is usually unknown. Fortu-

nately, as discussed in Chapter 3, E(s2) ••S2 where

2s

n _ 2
1: (xi-x)
i.. ----n-l

2In Table 4.1, the value of s is shown for each of the 70 samples. The
average of the 70 values of s2 is equal to S2. The fact that E(s2) ••S2

is another important property of simple random samples.
2used as an estimate of S. That is,

22 N-n ss- ••-- --
x N n

is an unbiased estimate of the variance of x.

2In practice s is

To recapitulate, we have just verified three important properties of

simple random samples:
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(1) E(x) = X

The standard error of x. namely S- • is a measure of how much x variesx

under repeated sampling from X. Incidentally. notice that Equation (4.1)

shows how the variance of x is related to the size of the sample. Now

we need to consider the form or shape of the distribution of x.

Definition 4.1. The distribution of an estimate is often called the

sampling distribution. It refers to the distribution of all possible

values of an estimate that could occur under a prescribed sampling plan.

4.2 SHAPE OF THE SAMPLING DISTRIBUTION

For random sampling there is a large volume of literature on the

distribution of an estimate which we will not attempt to review. In

practice. the distribution is generally accepted as being normal (See

Figure 4.1) unless the sample size is "small." The theory and empirical

tests show that the distribution of an estimate approaches the normal

distribution rapidly as the size of the sample increases. The closeness

of the distribution of an estimate to the normal distribution depends on:

(1) the distribution of X (i.e•• the shape of the frequency distribution

of the values of X in the population being sampled), (2) the form of the

estimator. (3) the sample design. and (4) the sample size. It is not

possible to give a few simple, exact guidelines for deciding when the

degree of approximation is good enough. In practice. it is generally a

matter of working as though the distribution of an estimate is normal but

being mindful of the possibility that the distribution might differ
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E(x')+a ,x

Figure 4.1--Distribution of an estimate (normal distribution)

considerably from normal when the sample is very small and the population

distribution is highly skewed. 1/

It is very fortunate that the sampling distribution is approximately

normal as it gives a basis for probability statements about the precision

of an estimate. As notation,x' will be the general expression for any

estimate, and a , is the standard error of x'.
x

Figure 4.1 is a graphical representation of the sampling distribution

of an estimate. It is the normal distribution. In the mathematical

equation for the normal distribution of a variable there are two parameters:

the average value of the variable, and the standard error of the variable.

1/ For a good discussion of the distribution of a sample estimate, see
Vol. I, Chapter 1, Hansen, Hurwitz, and Madow. Sample Survey Methods and
Theory, John Wiley and Sons, 1953.
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Suppose x~ is an estimate from a probability sample. The characteristics

of the sampling distribution of x~ are specified by three things: (1) the

expected value of x~, E(x~), which is the mean of the distribution; (2) the

standard error of x~, 0x~' and (3) the assumption that the distribution is

normal. If x~ is normally distributed, two-thirds of the values that x~

could equal are between [E(x~) - 0 ~] and [E(x~) + 0 ~], 95 percent of thex x

possible values of x~ are between [E(x') - 20 ~] and [E(x~) + 20 ~], andx x
99.7 percent of the estimates are within 30 , from E(x~).x

Exercise 4.1. With reference to Illustration 4.1, find E(x) - 0- and------- x
E(x) + 0-. Refer to Table 4.2 and find the proportion of the 70 valuesx

of x that are between E(x) - 0- and E(x) + 0-. How does this compare withx x
the expected proportion assuming the sampling distribution of x is normal?

The normal approximation is not expected to be close,owing to the small

size of the population and of the sample. Also compute E(x) - 20- and
x

E(x) + 20- and find the proportion of the 70 values of x that are betweenx
these two limits.
4.3 SAMPLE DESIGN

There are many methods of designing and selecting samples and of making

estimates from samples. Each sampling method and estimator has a sampling

distribution. Since the sampling distribution is assumed to be normal,
2alternative methods are compared in terms of E(x~) and 0 , (or 0 ~).x x

For simple random sampling, we have seen, for a sample of n, that

every possible combination £f~ elements has an equal chance of being the

sample selected. Some of these possible combinations (samples) are much

better than others. It is possible to introduce restrictions in sampling

so some of the combinations cannot occur or so some combinations have a
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higher probability of occurrence than others. This can be done without

introducing bias in the extimate x~ and without losing a basis for esti-

mating a~. Discussion of particular sample designs is not a primaryx
purpose of this chapter. However, a few simple illustrations will be

used to introduce the subject of design and to help develop concepts of

sampling variation.

Illustration 4.2. Suppose the population of 8 elements used in

Table 4.1 is arranged so it consists of four sampling units as follows:

Sampling Unit

1

2

3

4

Elemen ts Values of X Sample Unit Total

1,2 X - 2, X ••1 31 2
3,4 X '"'6, X4 '"'4 103

5,6 X ••7, X ••8 155 6

7,8 X7 ••11 X = 9 20, 8

For sampling purposes the population now consists of four sampling

units rather than eight elements. If we select a simple random sample of

two sampling units from the population of four sampling units, it is clear

that the sampling theory for simple random sampling applies. This illus-

tration points out the importance of making a clear distinction between a

sampling unit and an element that a measurement pertains to. A sampling

unit corresponds to a random selection and it is the variation among Sam-

pIing units (random selections) that determines the sampling error of an

estimate. When the sampling units are composed of more than one element,

the sampling is commonly referred to as cluster sampling because the ele-

ments in a sampling unit are usually close together geographically.
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For a simple random sample of 2 sampling units, the variance of xc'

where x is the sample average per sampling unit, isc

N S2 • (3-12)2 + (10-12)2 + (15-12)2 + (20-12)2 158• 4, n • 2, and ------------------------ • --c 3 3

where

S~
xc

N-n.--
N 13.17

Instead of the average per sampling unit one will probably be interested
x- cin the average per element, which is x • ~ ' since there are two elements

in each sampling unit. The variance of x is one-fourth of the variance

of xc. Hence, the variance of i is 13417 • 3.29.

There are only six possible random samples as follows:

Sample average per 2Sample Sampling Units sampling unit, x sc c

1 1,2 6.5 24.5

2 1,3 9.0 72.0

3 1,4 11.5 144.5

4 2,3 12.5 12.5

5 2,4 15.0 50.Q

6 3,4 17.5 12.5

2where sc

n _ 2
E(xi-x )
i c.-----n-l and Xi is a sampling unit total. Be sure to notice

2 2that s (which is the sample estimate of S ) is the variance among samplingc c

units in the sample, not the variance among individual elements in the

sample. From the list of six samples, it is easy to verify that i is anc
2unbiased estimate of the population average per sampling unit and that sc

is an unbiased estimate of 158 , the variance among the four sampling3
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occurring for the cluster sampling and a probabilitv
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units in the population. Also, the variance alOOnp,the six values of x is

13.17 which agrees with the formula.

The six possible cluster samples are among the 70 sa~ples listed in

Table 4.1. Their sample numhers in Tahle 4.1 are I, 9,28,43,62, and

70. A "c" follows these sample numhers. The s:1mplinl';distribution for

the six samples is shown in Table 4.2 for comparison with simple random

sampling. It is clear fron inspection that random selection from these

six is less desirable than random selection from the 70. For example,

probabi lity of t of
1

OJ f only 35 when

selecting a sinple random sample of four elements. In this illustration,

the sampling restriction (clustering of elements) increased the sa~pling

variance from 1.5 to 3.29.

It is of importance to note that the average variance among elements

within the four clusters is only 1.25. (Students should compute the within

cluster variances and verifv 1.25). This is much less than 12.00, the

variance among the 8 elenents of the population. In r"ealitv, the variance

among elements within clusters is usually less than the variance among all

elements in the population, because clusters (sampling units) are usuallv

composed of elements that are close together and elements that are close

together usually show a tendency to be alike.

Exercise 4.2. In Illustration 4.2, if the average variance ar.long

elements within clusters had been greater than 12.00, the sampling variance

for cluster sampling would have been less than the sampling variance for a

simple random sample of elements. Repeat what was done in Illustration 4.2
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usinb as san~ling units elements 1 and 6, 2 and 5, 3 and 8, and 4 and 7.

Study the results.

Illustration 4.3. Perhaps the most common method of samplin~ is to

assiGn sampling units of a population to groups called strata. A simple

random sample is then selected from each stratum. Suppose the population

used in Illustration 4.1 is divided into two strata as follows:

Stratum 1

Stratum 2

The sampling plan is to select a simple random sample of two elements

from each stratum. There are 36 possible samples of 4, two from each

stratum. These 36 samples are identified in Table 4.1 by an s after the

sample number so you may compare the 36 possible stratified random samples

with the 70 simple random samples and with the six cluster samples. Also,

see Table 4.2.

Consider the variance of x. We can write

x =

\oJhereXl is the sample average for stratum I and x2 is the average for

stratum 2. According to Theorem 3.5

S~
x

We know the covariance, S- - , is zero because the sampling from onexlx2
stratum is independent of the sampling from the other stratum. And,

since the sample within each stratum is a simple random sample,

S2
Nl - 2

2 ~~l-nl S2
L: (Xli-Xl'>

1 where iS- = =Xl N1 nl I N -1
I



The subscript "I" refers to stratum 1.
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is of the same form as S~ •xl
Therefore,

Since

s~
x

1 :Jl-nl= 4 [-N--
1

+

Nl-nl N2-n2 1 2,--- "2 ' and nl n2Nl N2
('2+S2

S~ 1 .)1 '2 1 [4.92+2.~2] 0.49= - [--2-] =x 8 8 2

The variance, 0.49, is comparable to 1.5 in Illustration 4.1 and to 3.29 in
Illustration 4.2.

In Illustration 4.2, the sampling units were groups of two elements and

the variance among these groups (sampling units) appeared in the formula

for the variance of x. In Illustration 4.3, each ele~ent was a sampling

unit but the selection process (randomization) was restricted to taking

one stratum (subset) at a time,so the sampling variance was determined by

variability within strata. As you study samplinr, plans, form mental pictures

of the variation which the sampling error depends on. h'ith experience and
,

accumulated knowledge of \vhat the patterns of variation in various popula-

tions are like, one can become expert in .1 udging the efficiency of alterna-

tive sampling plans in relation to specific objectives of a survey.

If the population and the samples in the above Llustrations had been

larger, the distributions in Table 4.2 would have been approxinately nor-

mal. Thus, since the form of the distribution of an estimate from a prob-

ability sample survey is accepted as being normal, onlv two attributes of

an estimate need to be evaluated, namely its expected value and its

variance.



125

In the above illustrations ideal conditions were implicitly assumed.

Such conditions do not exist in the real world so the theory must be

extended to fit, more exactly, actual conditions. There are numerous

sources of error or variation to be evaluated. The nature of the rela-

tionship between theory and practice is a major governing factor deter-

mining the rate of progress toward improvement of the accuracy of survey

resul ts.

We will now extend error concepts toward more practical settings.

4.4 RESPONSE ERROR

So far, we have discussed sampling under implicit assumptions that

measurements are obtained from all n elements in a sample and that the

measurement for each element is without error. Neither assumption fits,

exactly, the real world. In addition, there are "coverage" errors of

various kinds. For example, for a farm survey a farm is defined but

application of the definition involves some degree of ambiguity about

whether particular enterprises satisfy the definition. Also, two persons

might have an interest in the same farm tract giving rise to the possibility

that the tract might be counted twice (included as a part of two farms) or

omitted entirely.

Partly to emphasize that error in an estimate is more than a matter

of sampling, statisticians often classify the numerous sources of error

into one of two general classes: (1) Sampling errors which are errors

associated with the fact that one has measurements for a sample of elements

rather than measurements for all elements in the population, and (2) non-

sampling errors--errors that occur whether sampling is involved or not.

Mathematical error models can be very complex when they include a term for
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each of many sources of error and attempt to represent exactly the real

world. However, complicated error models are not always necessary,

depending upon the purposes.

For purposes of discussion, two oversimplified response-error models

will be used. This will introduce the subject of respons~ error and give

some clues regarding the nature of the impact of response error on the

distribution of an estimate. For simplicity, we will assume that a

measurement is obtained for each element in a random sample and that no

ambiguity exists regarding the identity or definition of an element. Thus,

we will be considering sampling error and response error simultaneously.

Illustration 4.4. Let TI, •••,TN be the "true values" of some variable

for the N elements of a population. The mention of true values raises

numerous questions about what is a true value. For example, what is your

true weight? How would you define the true weight of an individual? We

will refrain from discussing the problem of defining true values and simply

assume that true values do exist according to some practical definition.

\ihen an attempt is made to ascertain Ti, some value other than T
i

might

be obtained. Call the actual value obtained Xi' The difference, ei -
thXi - Ti, is the response error for the i element. If the characteristic,

for example, is a person's weight, the observed weight, Xi' for the ith

individual depends upon when and how the measurement is taken. However,

for simplicity, assume that Xi is always the value obtained regardless of

the cortditions under which the measurement is taken. In other words,
thassume that the response error, e

f
, is constant for the i element. In

this hypothetical case, we are actually sampling a population set of values

Xl""'~ instead of a set of true values Tl"" ,TN'
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Under the conditions as stated, the sampling theory applies exactly

to the set of population values Xl' ••• '~. If a simple random sample of

elements is selected and measurements for all elements in the sample are

obtained, then E(x) = X. That is, if the purpose is to estimate T

N
LT

i
i- --N

the estimate is biased unless T happens to be equal to X. The bias is

x - T which is appropriately called "response bias."

Rewrite ei = Xi - Ti as follows:

Then, the mean of a simple random sample may be expressed as

n n
LXi L (ti+ei)x.--=----
n n

(4.2)

or, as x 0:: t + e •

From the theory of expected values, we have

Since E(x) • X and E(t) - T it follows that

Thus, x is a biased estimate of T unless E(e)- 0, where E(e)
That is, E(e) is the average of the response errors, ei, for the whole
population.

For simple random sampling the variance of x is

S2S~ _ N-n X
x N n whe re

How does the response error affect the variance of X and of x? We have
thalready written the observed value for the i element as being equal to
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its true value plus a response error, that is, Xi - Ti + ei· Assuming

random sampling, Ti and ei are random variables. We can use Theorem 3.5

from Chapter III and write

S2 = S2 + S2 + 2ST (4•.3)X T e ,e

222where Sx is the variance of X, ST is the variance of T, Se is the response

variance (that is, the variance of e), and ST is the covariance of T and,e
e. The terms on the right-hand side of Equat~on (4.3) cannot be evaluated

unless data on Xi and Ti are available; however, the equation does show how

the response error influences the variance of X and hence of x.
As a numerical example, assume a population of five elements and the

following values for T and X:

Average

23

13

17

25

7

17

26

12

23

25

9

19

3

-1

6

o

2

2

Students may wish to verify the following results, especially the variance

of e and the covariance of T and e:

52 _ 62.5
X S~ = 54.0 2S = 7.5e s •• 0.5T,e

As a verification of Equation (4.3) we have

62.5 ••54.0 + 7.5 + (2)(0.5)
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n _ 2
E(xi-x)

2 ia simple random sample one would compute s- - --------x n-1

as an estimate of the varipnce of x.
2

and use N-n Sx
N n

2 2Sx is an unbiased estimate of 5X rather

variation in ei is included in s; 1

Is it clear that

than of 52 and that the impact ofT

where

To summarize, response error ca~sed a bias in x as an estimate of T

that was equal to X - T. In addition, it was a source of variation included

in the standard error of x. To evaluate bias and variance attributable to

response error, information on Xi and Ti must be available.

Illustration 4.5. In this case, we assume that the response error

for a given element is not constant. That is, if an element were measured
thon several occasions, the observed values for the i element could vary

even though the true value, Ti, remained unchanged. Let the error model be

Xij • Ti + eij
Xij is the observed value of X for the ith element when the

observation is taken on a particular occasion, j,

Ti is the true value of X for the ith element,

and eij is the response error for the ith element on a particular

occasion, j.

Assume, for any given element, that the response error, e1j, is a random

variable. We can let eij - ei + eij, where ei is the average value of eij
for a fixed i, that is, ei - E(eij1i). This divides the response error

for the ith element into two components: a constant component, ei, and a

variable component, eij• By definition, the expected value of eij is zero

for any given element. That is, E(eijli) - O.
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Substituting ei + eij for e~j' the model becomes

The model, Equation (4.4), is now in a good form for comparison with

the model in Illustration 4.4. In Equation (4.4), ei, like ei in

Equation (4.2) is constant for a given element. Thus, the two models

are alike except for the added term, eij, in Equation (4.4) which allows

for the possibility that the response error for the ith element might not

be constant.

Assume a simple random sample of n elements and one observation for

each element. According to the model, Equation (4.4), we may now write

the sample mean as follows:

Hi Ie, Ieiji 1-i + + ix = n n n

(4.4)

Sununation with respect to j is not needed as there is only one observation

for each element in the sample. Under the conditions specified the expected

value of x may be expressed as follows:

E(x) = T + e

where T =

N
LT.
i 1

N
and e

N
Le,
i 1-

N

The variance of x is complicated unless some further assumptions are

made. Assume that all covariance terms are zero. Also, assume that the

conditional variance of eij is constant for all values of i; that is, let

V(ei,li) = S2. Then, the variance of x is
J e

S~ = N-n
x N

S2
-'!. + N-n
n N

S~
~+
n



where N-1 S~
e
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and S; is the conditional variance of eij, that is, V(eij1i). For this

model the variance of x does not diminish to zero as n~N. However, assuming

S2
eN is large, the variance of x, which becomes ,is probably negligible.N

Definition 4.2. Mean-Square Error. In terms of the theory of expected

values the mean-square error of an estimate, x', is E(x'-T)2 where T is the

target value, that is, the value being estimated. From the theory it is

easy to show that

Thus, the mean-square error, rose, can be expressed as follows:

mse 2cr ,x (4.5)

where B = E(x~) - T (4.6)

and 2cr ,x
E[x~-E(x~)]2 (4.7)

Definition 4.3. Bias. In Equation (4.5), B is the bias in x as

an estimate of T.

Definition 4.4. Precision. The precision of an estimate is the

standard error of the estimate, namely, cr ~ in Equation (4.7).x
Precision is a measure of repeatability. Conceptually, it is a

measure of the dispersion of estimates that would be generated by repetition

of the same sampling and estimation procedures many times under the same

conditions. With reference to the sampling distribution, it is a measure

of the dispersion of the estimates from the center of the distribution and
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does not include any indication of where the center of the distribution

is in relation to a target.

In Illustrations 4.1, 4.2, and 4.3, the target value was implicitly

assumed to be X; that is, T was equal to X. Therefore, B was zero and

the mean-square error of x" was the same as the variance of x ...•In

Illustrations 4.4 and 4.5 the picture was broadened somewhat by intro-

ducing response error and examining, theoretically, the impact of response

error on E(x"') and 0 ...•In practice many factors have potential forx

influencing the sampling distribution of x ...•That is, the data in a

sample are subject to error that might be attributed to several sources.

From sample data an estimate, x"',is computed and an estimate of the

variance of x'"is also computed. How does one interpret the results? In

Illustrations 4.4 and 4.5 we found that response error could be divided

into bias and variance. The error from any source can, at least concep-

tually, be divided into bias and variance. An estimate from a sample is

subject to the combined influence of bias and variance corresponding to

each of the several sources of error. When an estimate of the variance

of x" is computed from sample data, the estimate is a combination of

variances that might be identified with various sources. Likewise the

difference between E(x"') and T is a combination of biases that might be

identified with various sources.

Figure 4.2 illustrates the sampling distribution of x'"for four

different cases: A, no bias and low standard error; B, no bias and large

standard error; C, large bias and low standard error; and D, large bias

and large standard error. The accuracy of an estimator is sometimes defined

as the square root of the mean-square error of the estimator. According
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B: No bias--large standard error

T E(x")
1 I

T E(x")

c: Large bias--low standard error D: Large bias--large standard error

Figure 4.2--Examples of four sampling distributions

T

~ E(x")

Figure 4.3--Sampling distribution--
Each small dot corresponds to an estimate
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to that definition. we could describe estimators having the four sampling

distributions in Figure 4.2 as follows: In case A the estimator is precise

and accurate; in B the estimator lacks precision and is therefore inaccurate;

in C the estimator is precise but inaccurate because of bias, and in D -the

estimator is inaccurate because of bias and low precision.

Unfortunately, it is generally not possible to determine, exactly,

the magnitude of bias in an estimate. or of a particular component of bias.

However. evidence of the magnitude of bias is often available from general

experience, from knowledge of how well the survey processes were performed,

and from special investigations. The author accepts a point of view that

the mean-square error is an appropriate concept of accuracy to follow. In

that context. the concern becomes a matter of the magnitude of the rose and

the size of B relative to a,. That viewpoint is important because it isx
not possible to be certain that B is zero. Our goal should be to prepare

survey specifications and to conduct survey operations so B is small in

relation to 0,. Or. one might say we want the mse to be minimum for ax
given cost of doing the survey. Ways of getting evidence on the magnitude

of bias is a major subject and is outside the scope of this publication.

As indicated in the previous paragraph, it is important to know some-

thing about the magnitude of the bias, B. relative to the standard error,

0,. The standard error is controlled primarily by the design of a samplex
and its size. For many survey populations, as the size of the sample

increases, the standard error becomes small relative to the bias. In fact,

the bias might be larger than the standard error even for samples of

moderate size, for example a few hundred cases, depending upon the circum-

stances_ The point is that if the mean-square error is to be small. both
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Hand 0 ~ must be small. The approaches for reducing B are very different
x

from the approaches for reducing o~. The greater concern about non-
x

sampling error is bias rather than impact on variance. In the design and

selection of samples and in the processes of doing the survey an effort is

made to prevent biases that are "sampling" in origin. However, in survey

work one must be constantly aware of potential biases and on the alert to

minimize biases as well as random error (that is, 0 ~).x

The above discussion puts a census in the same light as a sample.

Results from both have a mean-square error. Both are surveys with refer-

ence to use of results. Uncertain inferences are involved in the use of

results from a census as well as from a sample. The only difference is

that in a census one attempts to get a measurement for all N elements,

but making n = N does not reduce the rose to zero. Indeed, as the sample

size increases, there is no positive assurance that the rosewill always

decrease; because, as the variance component of the rosedecreases, the

bias component might increase. This can occur especially when the popu-

lation is large and items on the questionnaire are such that simple,

accurate answers are difficult to obtain. For a large sample or a census,

compared to a small sample, it might be more difficult to control factors

that cause bias. Thus, it is possible for a census to be less accurate

(have a larger rose) than a sample wherein the sources of error are more

adequately controlled. Much depends upon the kind of information being

collected.

4.5 BIAS AND STANDARD ERROR

The words "bias," "biased," and "unbiased" have a wide variety of

meaning among various individuals. As a result, much confusion exists,
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especially since the terms are often used loosely. Technically, it seems

logical to define the bias in an estimate as being equal to B in Equation

(4.6), which is the difference between the expected value of an estimate

and the target value. But, except for hypothetical cases, numerical values

do not exist for either E(x') or the target T. Hence, defining an unbiased

estimate as one where B = E(x') - T E 0 is of little, if any, practical

value unless one is willing to accept the target as being equal to E(x').

From a sampling point of view there are conditions that give a rational

basis for accepting E(x') as the target. However, regardless of how the

target is defined, a good practical interpretation of E(x') is needed.

It has become common practice among survey statisticians to call an

estimate unbiased when it is based on methods of sampling and estimation

that are "unbiased." For example, in Illustration 4.4, x would be referred

to as an unbiased estimate--unbiased because the method of sampling and

estimation was unbiased. In other words, since x was an unbiased estimate

of X, x could be interpreted as an unbiased estimate of the result that

would have been obtained if all elements in the population had been

measured.

In Illustration 4.5 the expected value of x is more difficult to

describe. Nevertheless, with reference to the method of sampling and

estimation, x was "unbiased" and could be called an unbiased estimate

even though E(x) is not equal to T.

The point is that a simple statement which says, "the estimate is

unbiased" is incomplete and can be very misleading, especially if one is

not familiar with the context and concepts of bias. Calling an estimate

unbiased is equivalent to saying the estimate is an unbiased estimate of



137

its expected value. Regardless of how "bias" is defined or used, E(x"')

is the mean of the sampling distribution of X; and this concept of E(x"')

is very important because E(x"') appears in the standard error, a ..., of x'"
x

as well as in B. See Equations (4.6) and (4.7).

As a simple concept or picture of the error of an estimate from a

survey, the writer likes the analogy between an estimate and a shot at

a target with a gun or an arrm~. Think of a survey being replicated

many times using the same sampling plan, but a different sample for each

replication. Each replication would provide an estimate that corresponds

to a shot at a target.

In Figure 4.3, each dot corresponds to an estimate from one of the

replicated samples. The center of the cluster of dots is labeled E(x"')

because it corresponds to the expected value of an estimate. Around the

point E(x"') a circle is drawn which contains two-thirds of the points.

The radius of this circle corresponds to a "', the standard error of the
X

estimate. The outer circle has a radius of two standard errors and con-

tains 95 percent of the points. The target is labeled T. The distance

between T and E(x"') is bias, which in the figure is greater than the

standard error.

In practice, we usually have only one estimate, x"', and an estimate,

s "" of the standard error of x ...•With reference to Figure 4.3, thisx

means one point and an estimate of the radius of the circle around E(x"')

that would contain two-thirds of the estimates in repeated samplings. We

do not know the value of E(x"'); that is, we do not know where the center

of the circles is. However, when we make a statement about the standard

error of x"',we are expressing a degree of confidence about how close a
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particular estimate prepared from a survey is to E(x~); that is, how

close one of the points in Figure 4.3 probably is to the unknown point

E(x'). A judgment as to how far E(x') is from T is a matter of how T

is defined and assessment of the magnitude of biases associated with

various sources of error.

Unfortunately, it is not easy to make a short, rigorous, and complete

interpretative statement about the standard error of x~. If the estimated

standard error of x' is three percent, one could simply state that fact

and not make an interpretation. It does not help much to say, for example,

that the odds are about two out of three that the estimate is within three

percent of its expected value, because a person familiar with the concepts

already understands that and it probably does not help the person who is

unfamiliar with the concepts. Suppose one states, "the standard error of

x' means the odds are two out of three that the estimate is within three

percent of the value that would have been obtained from a census taken

under identically the same conditions." That is a good type of statement

to make but, when one engages in considerations of the finer points,

interpretation of "a census taken under identically the same conditions"

is needed--especially since it is not possible to take a census under

identically the same conditions.

In summary, think of a survey as a fully defined system or process

including all details that could affect an estimate, including: the method

of sampling; the method of estimation; the wording of questions; the order

of the questions on the questionnaire; interviewing procedures; selection,

training, and supervision of interviewers; and editing and processing of
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data. Conceptually, the sampling is then replicated many times, holding

all specifications and conditions constant. This would generate a sam-

pIing distribution as illustrated in Figures 4.2 or 4.3. We need to

recognize that a change in any of the survey specifications or conditions,

regardless of how trivial the change might seem, has a potential for

changing the sampling distribution, especially the expected value of ,x .

Changes in survey plans, even though the definition of the parameters

being estimated remains unchanged, often result in discrepancies that

are larger than the random error that can be attributed to sampling.

The points discussed in the latter part of this chapter were included

to emphasize that much more than a well designed sample is required to

assure accurate results. Good survey planning and management calls for

evaluation of errors from all sources and f0r trying to balance the effort

to control error from various sources so the mean-square error will be

within acceptable limits as economically as possible.
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